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Multinuclear transition metal complexes often exhibit unusual C1-C2 144 Rul-Cl 2.04
reactivities that are not found with mononuclear complexes and Cz-c?1 {i; gu{-ﬁzﬂf 3?3
are attributed to the cooperativity of multiple metal centess. gjjgs 153 c:-ﬁsa 112

particular example is the diverse reactivity of multiruthenium
polyhydride complexes, containing onlyl@es (Cp*) as auxiliary Ru2-C12.13
ligands, toward a variety of substrates, which has been developed Ru2-C22.22
and recently reviewed by Suzuki ettahmong the many fascinating
transformations, the reaction of (CpRusHs with cyclopentadiene
(CsHg) leading to formation of the trinuclear 2-methylruthenacy-
clopentadiene at ambient temperatdisee Scheme 1) has attracted
significant interest. It has been argued that this reaction constitutes
the first example of selective ©€C bond activatiofh by three
supposedly cooperating metal centers. Despite the substantial
experimental effor;® the mechanism of this reaction remains
unclear. Therefore, we undertook a density functional (B3L2YP)
exploration of the mechanism of the reaction of a model complex
(CpkRusHs (Al in Scheme 1) with €Hs. On the basis of the
computationdt’ results, we propose a multistep mechanism for this
reaction and highlight its most interesting aspects: the direct Figure 1. The optimized structure of transition stal&—B5—-B6, and
involvement of all three metal centers and two cluster hydrides, sglected interatomic distances, in A. The reaction coordinate i_s depicted

. . . L . with the arrows at the atoms. The atoms of the spectator Cp ligands are
which characterizes the reactivity of this triruthenium complex as represented by dots and are connected by thin lines.
versatile and cooperative.

The proposed mechanism (Scheme 1) is divided into two
parts. Part A connects the reactamdd, + CsHg, to the model
of the experimentally observed intermedia#d,3 + H,, and is
slightly endothermic. This part can occur via two distinct path-
ways, associative and dissociative. The associative pathway ° ) o . .
begins with the GHs coordination §CsHs, then —Hs): in con- bonds in ce_rtal_n transition metal complexes is well gstabl_léﬁed,
trast, the H dissociation takes place first in the dissociative path- the “catalytic” involvement of the two cluster hydrides in the
way (—H,, then+CsHe).8 The dissociative pathway has two steps transformation of the §Hg moiety proposed here is noveland

C4-H2 1.45
Ru3-H2 1.66
Ru3-C4 2.24
Ru3-C3 2.27

|
" Rul-H1"1.85 Rul-Ru2 2.88 |
Ru2-H1 1.88 Rul-Ru3 2.93 |
Ru3-HI 1.84 Ru2-Ru3 2.80

slightly exothermic. We suggest that this transformation occurs via
two sequential C(sp—H bond formation stepsAl3 — B1 and

B2 — B3) followed by C(sg)—H and C(sp)—H bond cleavage
steps B5 — B6 and B7 — B8). Although the lability of C-H

with high barriers: A2 — A3 (AG* = +26.9 kcal/mol,AH* = quite remarkable.
+27.3 kcal/mol,ASF = +1.1 cal/(mol K)) andA6 + CsHs — Another inspiring computational result is the further support for
A7 (AG* = +25.7 kcal/mol, AH* = +10.8 kcal/mol,AS = the notion of cooperatidiZbetween three Ru centers in a multistep

—50.1 cal/(mol K)). On the other hand, the activation param- transformation. For instance, in the transition sta&-B5—B6
eters for the rate-determining step (RDS) of the associative (Figure 1), the Ru3 center assists the & bond activation after
mechanismA2 + CsHg — A8, are AG* = +25.9 kcal/mol, AH* the C-C bond has been cleaved on the Rul center. The cooperative
= +15.5 kcal/mol, and\S" = —39.6 cal/(mol K). The comparison  involvement of the three Ru centers in activations ef@ and

of these results with the experimental activation parameters C—H bonds, as well as in agostic andnteractions with the ¢,

for the RDS AG* = +21.6 kcal/mol,AH* = +12.7 kcal/mol, fragment at various stages of Part B of our mechanism, is evident
and ASF = —30.0 cal/(mol K)) does not rule out either of the from Scheme 1.

two pathways. The C-C bond cleavageAl2 — Al3 step In summary, we propose a detailed mechanism for the com-
(AG" = +19.9 kcal/mol), which concludes Part A, is not rate- plex reaction of ruthenacyclopentadiene formatitimat involves
determining. direct assistance by two hydride and three Ru centers. We plan

The second part (Part B, Scheme 1) of the mechanism, the ; hresent a more detailed discussion of our results in the near
conversion of the intermediatal3 to the final productBs, is future, and we hope that our findings contribute to the understand-
* Emory University. ing of multinuclear, polyhydride transition metal clusters reac-

* Tokyo Institute of Technology. tivity.
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Scheme 1. The Gibbs Free Energy Profile (kcal/mol, 298 K, 1 atm) along the Proposed Mechanism for the Reaction RuzHs(Cp)s + CsHe?
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aThe spectator Cp ligand on each Ru is omitted. The models of the experimentally oBSepedies are outlined: reactait], intermediate A13,
product,B8. The B3LYP Gibbs free energies are in kcal/mol, relative to separiteshd GHe. See Supporting Information for computational details. The
transition state connecting speci&S and A6 has not been located but is anticipated to be less than 5 kcal/mol higher than either minimum.
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